1 Four sketch graphs are shown below.
A

B

c

D

(a) Which could be a graph of the concentration of a reactant, on the vertical axis, against time for a zero order reaction?
\square D
(b) Which could be a graph of rate of reaction, on the vertical axis, against the concentration of a reactant for a first order reaction?D
(c) Which could be a graph of rate of reaction, on the vertical axis, against the square of the concentration of a reactant for a second order reaction?ABD
(d) Which could be a graph of the concentration of a reactant, on the vertical axis, against time for a reaction which is catalysed by a product?AD
(Total for Question = 4 marks)

2 A halogenoalkane, RX , reacts with hydroxide ions, OH^{-}, to form an alcohol.

$$
\mathrm{RX}+\mathrm{OH}^{-} \rightarrow \mathrm{ROH}+\mathrm{X}^{-}
$$

The rate equation for the reaction is rate $k[\mathrm{RX}]$. Which of these statements is incorrect?

A Rate $\propto[R X]$.B RX is a primary halogenoalkane.C The reaction mechanism is $\mathrm{S}_{\mathrm{N}} 1$.D A carbocation intermediate forms in the reaction.
(Total for Question 1 mark)

3 The rate equation for the reaction between hydrogen gas and nitrogen monoxide gas is

$$
\text { rate } k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]
$$

If the concentration of both reactants is doubled, the rate will increase by a factor ofA 3
B 4
C 6
D 8

4 A reaction has the rate equation rate $k[\mathrm{X}][\mathrm{Y}]^{2}[\mathrm{Z}]$. The concentrations of each reactant are shown in the table below.

Reactant	Concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$
X	0.040
Y	0.20
Z	0.12

(a) If the rate of reaction under these conditions has a value of $0.24 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$, then the numerical value of k isA 0.00080
B 0.533
C 1.875
D 1250
(b) The units for the rate constant, k, areA $\mathrm{mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$B $\mathrm{mol}^{3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$
C $\mathrm{mol}^{-3} \mathrm{dm}^{-9} \mathrm{~s}^{-1}$
D $\mathrm{mol}^{3} \mathrm{dm}^{-9} \mathrm{~s}^{-1}$

5 The equation below shows the hydrolysis of a bromoalkane.

$$
\mathrm{RBr}+\mathrm{OH}^{-} \rightarrow \mathrm{ROH}+\mathrm{Br}^{-}
$$

For a particular bromoalkane, the rate equation is

$$
\text { rate } \quad \mathrm{k}[\mathrm{RBr}]
$$

The bromoalkane, RBr , is most likely to be
A $\mathrm{CH}_{3} \mathrm{Br}$
\square B $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
$\square \mathbf{C} \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Br}$
\square D $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
(Total for Question 1 mark)

6 Propanone reacts with iodine in acidic solution as shown in the equation below.

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

The rate equation for the reaction is

$$
\text { Rate }=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]
$$

(a) The most appropriate technique to investigate the rate of this reaction is

A titrating samples of reaction mixture with acid.B measurement of optical activity.C measurement of the volume of gas given off.D colorimetry.
(b) Which statement about the reaction is not correct?A The overall order of reaction is second order.B The units of the rate constant are $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.C The rate constant increases with temperature.D The rate increases four times when the concentration of propanone and iodine are both doubled.
(c) The reaction is carried out using a large excess of both propanone and acid. Which of the graphs below shows the change of iodine concentration with time?

■ A

$\square \mathbf{C}$

B

[I $\left.\mathrm{I}_{2}\right] \underbrace{}_{\text {time }}$

D

7 Methods for investigating reaction rates include

A colorimetry
B collecting and measuring the volume of a gas
C quenching, followed by titration with acid
D quenching, followed by titration with iodine solution.
Which method would be most suitable to investigate the rate of the following reactions?
(a) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{I}_{2}(\mathrm{aq})$ABCD
(b) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}(\mathrm{l})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{I})+\mathrm{Br}^{-}(\mathrm{aq})$ABCD

8 For a given initial reactant pressure, the half-life for a first order gaseous reaction was found to be 30 minutes.

If the experiment were repeated at half the initial reactant pressure, the half-life would beA 15 minutes.B 30 minutes.C 45 minutes.D 60 minutes.

9 To determine the activation energy (E_{a}) for a reaction, the variation of reaction rate with temperature is investigated.

The rate constant, k, for the reaction is related to the absolute temperature, T , by the expression

$$
\ln k=-\frac{E_{\mathrm{a}}}{R} \times\left(\frac{1}{\mathrm{~T}}\right)+\text { constant }
$$

where R is the gas constant.
The activation energy for the reaction could be obtained by plotting a graph of

vertical axis horizontal axis

A k TB
k
$\frac{1}{\mathrm{~T}}$
C
$\ln k$
T

D $\ln k$
$\frac{1}{\mathrm{~T}}$

10 W hich of the following graphs shows that a reaction is first order with respect to reactant \mathbf{X} ?
\square A [X]

\square B rate

$\square \quad$ C [X]

time
\square D rate

11 W hich of the following changes will lead to the greatest increase in the rate of the following endothermic reaction?

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) \quad \Delta H+\mathrm{ve}
$$

		Temperature	Initial concentration of N_{2} and O_{2}
\square	A	decrease by 15%	decrease by 15%
\square	B	increase by 15%	stay the same
\square	C	decrease by 15%	increase by 15%
\square	D	increase by 15%	increase by 15%

