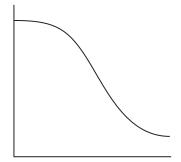
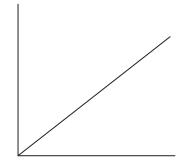

1 Four sketch graphs are shown below.


Α


В

C

D

(a) Which could be a graph of the concentration of a reactant, on the vertical axis, against time for a **zero** order reaction?

(1)

- ⊠ A
- **⋈** B
- **⋈** C
- **⋈** D

(b) Which could be a graph of rate of reaction, on the vertical axis, against the concentration of a reactant for a **first** order reaction?

(1)

- \times A
- \mathbb{X} B
- ⊠ C
- \times D

(C)	of the concentration of a reactant for a second order reaction?	(1)
X	A	
X	В	
X	c	
×	D	
(d)	Which could be a graph of the concentration of a reactant, on the vertical axis, against time for a reaction which is catalysed by a product?	(1)
×	A	
X	В	
X	c	
×	D	
	(Total for Question = 4 mark	(5)

2	A halogenoalkane, RX, reacts with hydroxide ions, OH-, to form an alcohol.		
	$RX + OH^- \rightarrow ROH + X^-$		
	The rat	e equation for the reaction is rate $k[RX]$. Which of these statements is ect?	
	\boxtimes A	Rate \propto [RX].	
	B	RX is a primary halogenoalkane.	
	\square C The reaction mechanism is S_N1 .		
	\boxtimes D	A carbocation intermediate forms in the reaction.	
		(Total for Question 1 mark)	
3	The rate	equation for the reaction between hydrogen gas and nitrogen monoxide gas is	
	rate $k[NO]^2[H_2]$		
	If the concentration of both reactants is doubled, the rate will increase by a factor of		
	\mathbb{Z} B	4	
	区 C	6	
	\boxtimes D	8	
		(Total for Question 1 mark)	

4 A reaction has the rate equation rate $k[X][Y]^2[Z]$. The concentrations of each reactant are shown in the table below.

Reactant	Concentration / mol dm ⁻³
X	0.040
Y	0.20
Z	0.12

(a) If the rate of reaction under these conditions has a value of 0.24 mol dm⁻³ s⁻¹, then the numerical value of k is

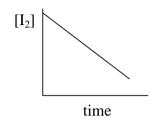
(1)

- \triangle **A** 0.00080
- **B** 0.533
- **C** 1.875
- **D** 1250
- (b) The units for the rate constant, k, are

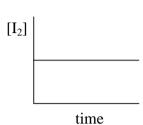
(1)

- \triangle **A** mol⁻³ dm⁹ s⁻¹
- \square **B** mol³ dm⁹ s⁻¹
- \square C mol⁻³ dm⁻⁹ s⁻¹
- \square **D** mol³ dm⁻⁹ s⁻¹

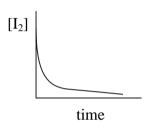
(Total for Question 2 marks)


5	The equation below shows the hydrolysis of a bromoalkane.		
$RBr + OH^{-} \rightarrow ROH + Br^{-}$			
	For a particular bromoalkane, the rate equation is		
		rate k[RBr]	
The bromoalkane, RBr, is most likely to be			
	\square A	CH_3Br	
	\square B	CH_3CH_2Br	
		$(CH_3)_3CCH_2Br$	
	■ D	$(CH_3)_3CBr$	
		(Total for Question 1 mag	ark)
6	Propanone reacts with iodine in acidic solution as shown in the equation below.		
		$CH_3COCH_3(aq) + I_2(aq) \ \rightarrow \ CH_3COCH_2I(aq) + H^+(aq) + I^-(aq)$	
	The rate equation for the reaction is		
		Rate = $k[CH_3COCH_3(aq)][H^+(aq)]$	
	(a) The	e most appropriate technique to investigate the rate of this reaction is	
	$\boxtimes \mathbf{A}$	titrating samples of reaction mixture with acid.	(1)
	⊠ B	measurement of optical activity.	
	区	measurement of the volume of gas given off.	
	■ D colorimetry.		
(b) Which statement about the reaction is not correct?			(1)
■ A The overall order of reaction is second order.			(1)
	\boxtimes B	The units of the rate constant are dm ³ mol ⁻¹ s ⁻¹ .	
	区	The rate constant increases with temperature.	
	■ D	The rate increases four times when the concentration of propanone and iodine are both doubled.	

6


(c) The reaction is carried out using a large excess of both propanone and acid. Which of the graphs below shows the change of iodine concentration with time?

(1)


 \blacksquare B

 \square C

 \square D

(Total for Question = 3 marks)

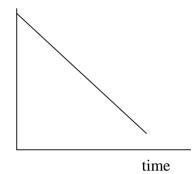
7	M	ethods for investigating reaction rates include	
	A	colorimetry	
	В	collecting and measuring the volume of a gas	
	C	quenching, followed by titration with acid	
	D	quenching, followed by titration with iodine solution.	
		Which method would be most suitable to investigate the rate of the following reactions?	
	(a)	$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) \rightarrow 2H_2O(I) + I_2(aq)$	1)
	×	A	" /
	×	В	
	×	c	
	×	D	
	(b)	$C_4H_9Br(I) + OH^-(aq) \rightarrow C_4H_9OH(I) + Br^-(aq)$	
	×	A	1)
	×	В	
	×	C	
	×	D	
		(Total for Question = 2 marks)	
8		or a given initial reactant pressure, the half-life for a first order gaseous reaction was und to be 30 minutes.	
	If t	the experiment were repeated at half the initial reactant pressure, the half-life would	be
	×	A 15 minutes.	
	×	B 30 minutes.	
	×	C 45 minutes.	
	×	D 60 minutes.	
		(Total for Question = 1 mark	()

9 To determine the activation energy (E_a) for a reaction, the variation of reaction rate with temperature is investigated.

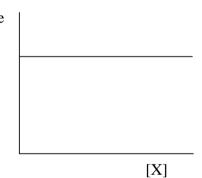
The rate constant, k, for the reaction is related to the absolute temperature, T, by the expression

$$\ln k = -\frac{E_{\rm a}}{R} \times \left(\frac{1}{T}\right) + \text{constant}$$

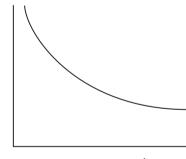
where *R* is the gas constant.


The activation energy for the reaction could be obtained by plotting a graph of

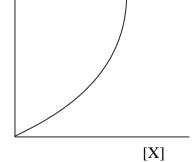
	vertical axis	horizontal axis	
⊠ A	k	Т	
	k	$\frac{1}{T}$	
⊠ C	ln <i>k</i>	Т	
⊠ D	In <i>k</i>	$\frac{1}{T}$	
			/Total for Overtion - 1 morels


(Total for Question = 1 mark)

10 Which of the following graphs shows that a reaction is first order with respect to reactant X?


 \mathbf{A} \mathbf{A} [X]

B rate



 \square **C** [X]

time

D rate

11 Which of the following changes will lead to the greatest increase in the **rate** of the following endothermic reaction?

$$N_2(g) + O_2(g) \rightarrow 2NO(g) \Delta H + ve$$

		Temperature	Initial concentration of N ₂ and O ₂
×	A	decrease by 15%	decrease by 15%
X	В	increase by 15%	stay the same
X	C	decrease by 15%	increase by 15%
X	D	increase by 15%	increase by 15%

(Total for Question = 1 mark)